Sigma (s ) is a letter in the Greek alphabet that has become the statistical symbol and metric of process variation. The sigma scale of measure is perfectly correlated to such characteristics as defects-per-unit, parts-per-million defectives, and the probability of a failure. Six is the number of sigma measured in a process, when the variation around the target is such that only 3.4 outputs out of one million are defects under the assumption that the process average may drift over the long term by as much as 1.5 standard deviations.
Six Sigma may be defined in several ways. Tomkins (1997) defines Six Sigma to be “a program aimed at the near-elimination of defects from every product, process and transaction.” Harry (1998) defines Six Sigma to be “a strategic initiative to boost profitability, increase market share and improve customer satisfaction through statistical tools that can lead to breakthrough quantum gains in quality.”
Six Sigma was launched by Motorola in 1987. It was the result of a series of changes in the quality area starting in the late 1970s, with ambitious ten-fold improvement drives. The top-level management along with CEO Robert Galvin developed a concept called Six Sigma. After some internal pilotm implementations, Galvin, in 1987, formulated the goal of
“achieving Six-Sigma capability by 1992” in a memo to all Motorola employees (Bhote, 1989). The results in terms of reduction in process variation were on-track and cost savings totalled US$13 billion and improvement in labor productivity achieved 204% increase over the period 1987–1997 (Losianowycz, 1999). In the wake of successes at Motorola, some leading elec-
tronic companies such as IBM, DEC, and Texas Instruments launched Six Sigma initiatives in early 1990s. However, it was not until 1995 when GE and Allied Signal launched Six Sigma as strategic initiatives that a rapid dissemination took place in non-electronic industries all over the world (Hendricks and Kelbaugh, 1998). In early 1997, the Samsung and LG Groups in Korea began to introduce Six Sigma within their companies. The results were amazingly good in those companies. For instance, Samsung SDI, which is a company under the Samsung Group, reported that the cost savings by Six Sigma projects totalled US$150 million (Samsung SDI, 2000a). At the present time, the number of large companies applying Six Sigma in Korea is growing exponentially, with a strong vertical deployment into many small- and medium-size enterprises as well.
As a result of consulting experiences with Six Sigma in Korea, it was believed that Six Sigma is a “new strategic paradigm of management innovation for company survival in this 21st century, which implies three things: statistical measurement, management strategy and quality culture.” It tells us how good our products, services and processes really are through statistical measurement of quality level. It is a new management strategy under leadership of top-level management to create quality innovation and total customer satisfaction. It is also a quality culture. It provides a means of doing things right the first time and to work smarter by using data information. It also provides an atmosphere for solving many CTQ (critical-to-quality) problems through team efforts.
CTQ could be a critical process/product result characteristic to quality, or a critical reason to quality characteristic. The former is termed as CTQy, and the latter CTQx.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment