Monday, August 31, 2009

Why is Six Sigma Fascinating in ISO 9000?

Six Sigma has become very popular throughout the whole world. There are several reasons for this popularity. First, it is regarded as a fresh quality management strategy which can replace TQC, TQM and others.
Many companies, which were not quite successful in implementing previous management strategies such as TQC and TQM, are eager to introduce Six Sigma.
Development process of Six Sigma in quality management
Six Sigma is viewed as a systematic, scientific, statistical and smarter (4S) approach for management innovation which is quite suitable for use in a knowledge-based information society.
Second, Six Sigma provides efficient manpower cultivation and utilization. It employs a “belt system” in which the levels of mastery are classified as green belt, black belt, master black belt and champion. As a person in a company obtains certain
training, he acquires a belt. Usually, a black belt is the leader of a project team and several green belts work together for the project team.
Third, there are many success stories of Six Sigma application in well known world-class companies. As mentioned earlier, Six Sigma was pioneered by Motorola and launched as a strategic initiative in 1987. Since then, and particularly from 1995, an exponentially growing number of prestigious global firms have launched a Six Sigma program. It has been noted that many globally leading companies run Six Sigma programs (see Figure 3), and it has been well known that Motorola, GE, Allied Signal, IBM, DEC, Texas Instruments, Sony, Kodak, Nokia, and Philips Electronics among others have been quite successful in Six Sigma. In Korea, the Samsung, LG, Hyundai groups and Korea Heavy Industries & Construction Company have been quite successful with Six Sigma.
Lastly, Six Sigma provides flexibility in the new millennium of 3Cs, which are:
• Change: Changing society
• Customer: Power is shifted to customer and customer demand is high
• Competition: Competition in quality and productivity
The pace of change during the last decade has been unprecedented, and the speed of change in this new millennium is perhaps faster than ever before. Most notably, the power has shifted from producer to customer. The producer-oriented industrial society is over, and the customer-oriented information society has arrived. The customer has all the rights to order, select and buy goods and services. Especially, in e-business, the customer has all-mighty power.
Six Sigma with its 4S(systematic, scientific, statistical and smarter) approaches provides flexibility in managing a business unit.

Quality Characteristic in ISO 9000

Any feature or characteristic of a product or service that is needed to satisfy
customer needs or achieve fitness for use is a quality characteristic. When
dealing with products the characteristics are almost always technical character-
istics, whereas service quality characteristics have a human dimension. Some
typical quality characteristics are given below.

Product characteristics
1. Accessibility Functionality Size
2. Availability Interchangeability Susceptibility
3. Appearance Maintainability Storability
4. Adaptability Odour – Strength
5. Cleanliness Operability -Taste
6. Consumption Portability – Testability
7. Durability Producibility Traceability
8. Disposability Reliability – Toxicity
9. Emittance Reparability Transportability
10. Flammability Safety – Vulnerability
11. Flexibility Security – Weight

Service quality characteristics
1. Accessibility Credibility – Honesty
2. Accuracy Dependability Promptness
3. Courtesy Efficiency – Responsiveness
4. Comfort Effectiveness Reliability
5. Competence Flexibility – Security

These are the characteristics that need to be specified and their achievement
controlled, assured, improved, managed and demonstrated. These are the
characteristics that form the subject matter of the product requirements
referred to in ISO 9000. When the value of these characteristics is quantified or
qualified they are termed product requirements. We used to use the term quality
requirements but this caused a division in thinking that resulted in people
regarding quality requirements as the domain of the quality personnel and
technical requirements being the domain of the technical personnel. All
requirements are quality requirements – they express needs or expectations that
are intended to be fulfilled by a process output that possesses inherent
characteristics. We can therefore drop the word quality. If a modifying word is
needed in front of the word requirements it should be a word that signifies the
subject of the requirements. Transportation system requirements would be
requirements for a transportation system, Audio speaker design requirements
would be requirements for the design of an audio speaker, component test
requirements would be requirements for testing components, and management
training requirements would be requirements for training managers. ISO 9000
requirements are often referred to as quality requirements as distinct from other
types of requirements but this is misleading. ISO 9000 is no more a quality
requirement than is ISO 1000 on SI units, ISO 2365 for Ammonium nitrate or
ISO 246 for Rolling Bearings. The requirements of ISO 9000 are quality
management system requirements – requirements for a quality management
system.

Quality Management

There are two schools of thought on quality management. One views quality management as the management of success and the other the elimination of failure. They are both valid. Each approaches the subject from a different angle:

The ‘success’ school is characterized by five questions :
1 What are you trying to do?
2 How do you make it happen?
3 How do you know it’s right?
4 How do you know it’s the best way of doing it?
5 How do you know it’s the right thing to do?

The ‘failure elimination’ school is characterized by five different questions
1 How do you know what is needed?
2 What could affect your ability to do it right?
3 What checks are made to verify achievement?
4 How do you ensure the integrity of these checks?
5 What action is taken to prevent a recurrence of failure?

In an ideal world, if we could design products, services and processes that could not fail we would have achieved the ultimate goal. Success means not only that products, services and processes fulfil their function but also that the function is what customers’ desire. Failure means not only that products, services and processes would fail to fulfil their function but also that their function was not what customers desired. A gold-plated mousetrap that does not fail is not a success if no one needs a gold-plated mousetrap.

The introductory clause of ISO 9001:1994 contained a statement that the aim of the requirements is to achieve customer satisfaction by prevention of nonconformities. (This was indicative of the failure school of thought.) The introductory clause of ISO 9001:2000 contains a statement that the aim is to enhance customer satisfaction through the effective application of the quality management system and the assurance of conformity to customer and applicable regulatory requirements. (This is indicative of the success school of thought.)

In reality you cannot be successful unless you know of the risks you are taking and plan to eliminate, reduce or control them. A unification of these approaches is what is therefore needed for organizations to achieve, sustain and improve quality. You therefore need to approach the achievement of quality from two different angles and answer two questions. What do we need
to do to succeed and what do we need to do to prevent failure?

Quality does not appear by chance, or if it does it may not be repeated. One has to design quality into the products and services. It has often been said that one cannot inspect quality into a product. A product remains the same after inspection as it did before, so no amount of inspection will change the quality of the product. However, what inspection does is measure quality in a way that allows us to make decisions on whether or not to release a piece of work. Work that passes inspection should be quality work but inspection unfortunately is not 100% reliable. Most inspection relies on human judgement and this can be affected by many factors, some of which are outside our control (such as the private life, health or mood of the inspector). We may also fail to predict the effect that our decisions have on others. Sometimes we go to great lengths in
preparing organization changes and find to our surprise that we neglected something or underestimated the effect of something. We therefore need other means to deliver quality products – we have to adopt practices that enable us to achieve our objectives while preventing failures from occurring.

Sunday, August 30, 2009

ISO 9001 / ISO 14001 Video

Watch ISO 14001 Video at http://www.youtube.com/watch?v=KUxbyQUGSnU

Watch ISO 9001 Video at http://www.youtube.com/watch?v=G8WI2MgyS7w

Measurement and Evaluation In ISO 14001:2004

After implementing the environmental policy, management needs to measure environmental that the data can be verified by an internal or external auditor.
interventions and their impact on the environment. This is done by building up an environmental effects register (environmental inventory). All equipment used for monitoring and measuring must be accurate and calibrated on a regular basis. To check the compliance status of an organization, additional information about regulations and other requirements is needed. A so called environmental regulations register?Eis often installed and maintained for this purpose. To obtain a better picture about the financial consequences of environmental protection, the accounting system should reflect environmental costs. Therefore, information about environmentally-induced costs and earnings needs to be collected. All this information should be recorded in such a manner.er
Environmental Performance Evaluation Accesses Environment Performance against environmental targets and objectives and against applicable environmental regulations. Responsibilities and authority need to be defined to deal with non-compliance within the EMS. This includes specifying the actions to be taken to correct an undesirable ituation and to prevent future non-compliance.
The analysis of environmental and economic performance leads to eco efficiency, the key component in sustainable business management.
The analysis of environmental and economic performance leads to eco
efficiency, the key component in sustainable business management. The recording of physical environmental data, environmental regulations and environmentally-induced financial information is necessary as a basis for effective decision making. Therefore, financial, legal and ecological data systems must be built up from scratch or adapted to the requirements of the EMS standard.

Evaluation Of Compliance Of ISO 14001 EMS

The requirement to establish a procedure for periodically evaluating compliance with applicable legal and other requirements falls short of specifically requiring regulatory compliance audits but, in fact, a system of regular regulatory compliance audits may be the most practical means for meeting this requirement of the standard. In the U.S., determination of whether to conduct a compliance audit will be governed in part by the particular jurisdiction’s approach to allowing a legal privilege for the self-assessment audit.
Evaluation vs. Audit – The difference between an evaluation and audit can only be determined by looking outside of ISO 14001. Consulting a dictionary reveals that an evaluation involves a determination of value or worth and that an audit is an examination of accounts done by persons appointed for the purpose. A better definition `is the more specific ISO 19011:2002, Guidelines for Quality and/or Environmental Management Systems Auditing, which defines an audit as a “systematic, independent, and documented process for obtaining audit evidence and evaluating it objectively to determine the extent to which the audit criteria are fulfilled.” Many organizations do not have a system for evaluating regulatory compliance other than their own records and the inspections of regulatory officials. This lack of a verification system can be a risky way to operate. Reports of enforcement actions and consent agreements show that many organizations are blindsided by rogue employees who violate rules and falsify documents to cover up environmental misdeeds. Although ISO 14001 does not prescribe a specific approach to evaluation of regulatory compliance, organizations should consider methods for going beyond verification of records by collecting and evaluating physical evidence.

Thursday, August 27, 2009

Basic QC and Six Sigma Tools

The 7 QC Tools
The Seven Quality Control tools (7QC tools) are graphical and statistical tools which are most often used in QC for continuous improvement. Since they are so widely utilized by almost every level of the company, they have been nicknamed the Magnificent Seven. They are applicable to improvements in all dimensions of the process performance triangle: variation of quality, cycle time and yield of productivity.
Each one of the 7QC tools had been used separately before 1960. However, in the early 1960s, they were gathered together by a small group of Japanese scientists lead by Kaoru Ishikawa, with the aim of providing the QC Circles with effective and easy-to-use tools. They are, in alphabetical order, cause-and-effect diagram, check sheet, control chart, histogram, Pareto chart, scatter diagram and stratification. In Six Sigma, they are extensively used in all phases of the improvement methodology – define, measure, analyze, improve and control.
(1) Cause-and-effect diagram
An effective tool as part of a problem-solving process is the cause-and-effect diagram, also known as the Ishikawa diagram (after its originator) or fishbone diagram. This technique is useful to trigger ideas and promote a balanced approach in group brainstorming sessions where individuals list the perceived sources (causes) with respect to outcomes (effect).
When constructing a cause-and-effect diagram, it is often appropriate to consider six main causes that can contribute to an outcome response (effect): so-called 5M1E (man, machine, material, method, measurement, and environment).
When preparing a cause-and-effect diagram, the first step is to agree on the specific wording of the effect and then to identify the main causes that can possibly produce the effect. The main causes can often be identified as any of 5M1E, which helps us to get started, but these are by no means exhaustive.
Using brainstorming techniques, each main cause is analyzed. The aim is to refine the list of causes in greater detail until the root causes of that particular main cause are established. The same procedure is then followed for each of the other main causes. The method is a main cause, the pressure and the temperature are the causes, and “the pressure is low” and “the temperature is too high” are the root causes.
(2) Check sheet
The check sheet is used for the specific data collection of any desired characteristics of a process or product that is to be improved. It is frequently used in the measure phase of the Six Sigma improvement methodology, DMAIC. For practical purposes, the check sheet is commonly formatted as a table. It is important that the check sheet is kept simple and that its design is aligned to the characteristics that are measured. Consideration should be given as to who should gather the data and what measurement intervals to apply. For example, Figure 4.2 shows a check sheet for defect items in an assembly process of automobile ratios.
(3) Control chart
(a) Introduction
The control chart is a very important tool in the “analyze, improve and control” phases of the Six Sigma improvement methodology. In the “analyze” phase, control charts are applied to judge if the process is predictable; in the “improve” phase, to identify evidence of special causes of variation so that they can be acted on; in the “control” phase, to verify that the performance of the process is under control.
The original concept of the control chart was proposed by Walter A. Shewhart in 1924 and the tool has been used extensively in industry since the Second World War, especially in Japan and the USA after about 1980. Control charts offer the study of variation and its source. They can give process monitoring and control, and can also give direction for improvements. They can separate special from common cause issues of a process. They can give early identification of special causes so that there can be timely resolution before many poor quality products are produced. Shewhart control charts track processes by plotting data over time in the form shown in Figure 4.3. This chart can track either variables or attribute process parameters. The types of variable charts are process mean (x), range (R), standard deviation (s), individual value (x) and moving range (Rs). The attribute types are fraction nonconforming (p), number of nonconforming items (np), number of nonconformities (c), and nonconformities per unit (u).
(4) Histogram
It is meaningful to present data in a form that visually illustrates the frequency of occurrence of values. In the analysis phase of the Six Sigma improvement methodology, histograms are commonly applied to learn about the distribution of the data within the results Ys and the causes Xs collected in the measure phase and they are also used to obtain an understanding of the potential for improvements.
(5) Pareto chart
The Pareto chart was introduced in the 1940s by Joseph M.Juran, who named it after the Italian economist and statistician Vilfredo Pareto, 1848–1923. It is applied to distinguish the “vital few from the trivial many” as Juran formulated the purpose of the Pareto chart. It is closely related to the so-called 80/20 rule – “80% of the problems stem from 20% of the causes,” or in Six Sigma terms “80% of the poor values in Y stem from 20% of the Xs.”
In the Six Sigma improvement methodology, the Pareto chart has two primary applications. One is for selecting appropriate improvement projects in the define phase. Here it offers a very objective basis for selection, based on, for example, frequency of occurrence, cost saving and improvement potential in process performance.
The other primary application is in the analyze phase for identifying the vital few causes (Xs) that will constitute the greatest improvement in Y if appropriate measures are taken.
A procedure to construct a Pareto chart is as follows:
1) Define the problem and process characteristics to use in the diagram.
2) Define the period of time for the diagram – for example, weekly, daily, or shift.
Quality improvements over time can later be made from the information determined within this step.
3) Obtain the total number of times each characteristic occurred.
4) Rank the characteristics according to the totals from
(6) Scatter diagram
The scatter plot is a useful way to discover the relationship between two factors, X and Y, i.e., the correlation. An important feature of the scatter plot is its visualization of the correlation pattern, through which the relationship can be determined. In the improve phase of the Six Sigma improvement methodology, one often searches the collected data for Xs that have a special influence on Y. Knowing the existence of such relationships, it is possible to identify input variables that
cause special variation of the result variable. It can then be determined how to set the input variables, if they are controllable, so that the process is improved. When several Xs may influence the values of Y, one scatter plot should be drawn for each combination of the Xs and Y.
(7) Stratification
Stratification is a tool used to split collected data into subgroups in order to determine if any of them contain special cause variation. Hence, data from different sources in a process can be separated and analyzed individually. Stratification is mainly used in the analyze phase to stratify data in the
search for special cause variation in the Six Sigma improvement methodology.
The most important decision in using stratification is to determine the criteria by which to stratify. Examples can be machines, material, suppliers, shifts, day and night, age groups and so on. It is common to stratify into two groups. If the number of observations is large enough, more detailed stratification is also possible.

TQM and Six Sigma

While Six Sigma is definitely succeeding in creating some impressive results and culture changes in some influential organizations, it is certainly not yet a widespread success. Total Quality Management (TQM) seems less visible in many businesses than it was in the early 1990s. However, many companies are still engaged in improvement efforts based on the principles and tools of TQM. It appears at least in Korea that Six Sigma is succeeding while TQM is losing its momentum.
One of the problems that plagued many of the early TQM initiatives was the preeminence placed on quality at the expense of all other aspects of the business. Some organizations experienced severe financial consequences in the rush to make quality “first among equals.” The disconnection between management systems designed to measure customer satisfaction and those designed to measure provider profitability often led to unwise investments in quality, which has been often practiced in TQM. Ronald Snee (1999) points out that although some people believe it is nothing new, Six Sigma is unique in its approach and deployment. He defines Six Sigma as a strategic business improvement approach that seeks to increase both customer satisfaction and an organization’s financial health. Snee goes on to claim that the following eight characteristics account for Six Sigma’s increasing bottom-line (net income or profit) success and popularity with executives.
• Bottom-line results expected and delivered
• Senior management leadership
• A disciplined approach (DMAIC)
• Rapid (3–6 months) project completion
• Clearly defined measures of success
• Infrastructure roles for Six Sigma practitioners and leadership
• Focus on customers and processes
• A sound statistical approach to improvement
Other quality initiatives including TQM have laid claim to a subset of these characteristics, but only Six Sigma attributes its success to the simultaneous application of all eight. Six Sigma is regarded as a vigorous rebirth of quality ideals and methods, as these are applied with even greater passion and commitment than often was the case in the past. Six Sigma is revealing a potential for success that goes beyond the levels of improvement achieved through the many TQM efforts. Some of the mistakes of yesterday’s TQM efforts certainly might be repeated in a Six Sigma initiative if we are not careful.
A review of some of the major TQM pitfalls, as well as hints on how the Six Sigma system can keep them from derailing our efforts is listed below.
1. Links to the business and bottom-line success:
In TQM, quality often was a “sidebar” activity, separated from the key issues of business strategy and performance. The link to the business and bottom-line success was undermined, despite the term “total” quality, since the effort actually was limited to product and manufacturing functions. Six Sigma emphasizes reduction of costs, thereby contributing to the bottom-line, and participation of three major areas: manufacturing, R&D and service parts.
2. Top-level management leadership:
In many TQM efforts, top-level management’s skepticism has been apparent, or their willingness to drive quality ideas has been weak. Passion for and belief in Six Sigma at the very summit of the business is unquestioned in companies like
Motorola, GE, Allied Signal (now Honeywell), LG and Samsung. In fact, top-level management involvement is the beginning of Six Sigma.
3. Clear and simple message:
The fuzziness of TQM started with the word “quality” itself. It is a familiar term with many shades of meaning. In many companies, Quality was an existing department with specific responsibilities for “quality control” or “quality assurance,” where the discipline tended to focus more on stabilizing rather than improving processes. Also TQM does not provide a clear goal at which to aim. The concept of Six Sigma is clear and simple. It is a business system for achieving and sustaining success through customer focus, process management and improvement, and the wise use of facts and data. A clear goal (3. 4 DPMO or 6s quality level) is the centerpiece of Six Sigma.
4. Effective training:
TQM training was ineffective in the sense that the training program was not so systematic. Six Sigma divides all the employees into five groups (WB, GB, BB, MBB and Champion), and it sets very demanding standards for learning, backing them up with the necessary investment in time and money to help people meet those standards.
5. Internal barriers:
TQM was a mostly “departmentalized” activity in many companies, and it seemed that TQM failed to break down internal barriers among departments. Six Sigma places priority on cross-functional process management, and cross-functional project teams are created, which eventually breaks down internal barriers.
6. Project team activities:
TQM utilized many “quality circles” of blue-collar operators and workers, and not many “task force teams” of white-collar engineers even if they are needed. Six Sigma demands a lot of project teams of BBs and GBs, and the project team activities are one of the major sources of bottom-line and top-line success.
3. Clear and simple message:
The fuzziness of TQM started with the word “quality” itself. It is a familiar term with many shades of meaning. In many companies, Quality was an existing department with specific responsibilities for “quality control” or “quality assurance,” where the discipline tended to focus more on stabilizing rather than improving processes. Also TQM does not provide a clear goal at which to aim. The concept of Six Sigma is clear and simple. It is a business system for achieving and sustaining success through customer focus, process management and improvement, and the wise use of facts and data. A clear goal (3. 4 DPMO or 6s quality level) is the centerpiece of Six Sigma.

4. Effective training:
TQM training was ineffective in the sense that the training program was not so systematic. Six Sigma divides all the employees into five groups (WB, GB, BB, MBB and Champion), and it sets very demanding standards for learning, backing them up with the necessary investment in time and money
to help people meet those standards.

5. Internal barriers:
TQM was a mostly “departmentalized” activity in many companies, and it seemed that TQM failed to break down internal barriers among departments. Six Sigma places priority on cross-functional process management, and cross-functional project teams are created, which eventually breaks down internal barriers.

6. Project team activities:
TQM utilized many “quality circles” of blue-collar operators and workers, and not many “task force teams” of white-collar engineers even if they are needed. Six Sigma demands a lot of project teams of BBs and GBs, and the project team activities are one of the major sources of bottom-line and top-line success.

ISO 9000 Series and Six Sigma

ISO (International Organization for Standardization) 9000 series standards were first published in 1987, revised in 1994, and re-revised in 2000 by the ISO. The 2000 revision, denoted by ISO 9000:2000, has attracted broad expectations in industry.
As of the year 2001, more than 300,000 organizations world-wide have been certified to the ISO 9000 series standards. It embodies a consistent pair of standards, ISO 9001:2000 and ISO 9004:2000, both of which have been significantly updated and modernized. The ISO 9001:2000 standard specifies requirements for a quality management system for which third-party certification is possible, whereas ISO 9004:2000 provides guide- lines for a comprehensive quality management system and performance improvement through Self-Assessment.
The origin and historical development of ISO 9000 and Six Sigma are very different. The genesis of ISO 9000 can be traced back to the standards that the British aviation industry and the U.S. Air Force developed in the 1920s to reduce the need for inspection by approving the conformance of suppliers’ product quality. These standards developed into requirements for suppliers’ quality assurance systems in a number of western countries in the 1970s. In 1987 they were amalgamated into the ISO 9000 series standards.
Independent of ISO 9000, the same year also saw the launch of Six Sigma at Motorola and the launch of Self-Assessment by means of the Malcolm Baldrige National Quality Award in USA. Both Six Sigma and Self-Assessment can be traced back to Walter A. Shewhart and his work on variation and continuous improvement in the 1920s. It was Japanese industry that pioneered a broad application of these ideas from the 1950s through to the 1970s. When variation and continuous improvement caught the attention of some of the American business leaders in the late 1980s, it took the form of the Malcolm Baldrige National Quality Award, on a national level, and of Six Sigma at Motorola.
Some people are wondering if the ISO 9000:2000 series standards make Six Sigma superfluous. They typically refer to clause 8 of ISO 9001: “Measurement, analysis, improvement.”
It requires that companies install procedures in operations for the measurement of processes and data analysis using statistical techniques with the demonstration of continuous improvement . They also partly refer to the ISO 9004:2000 standards that embody guidelines and criteria for Self-Assessment similar to the national quality awards.
The author firmly believes that Six Sigma is needed regardless of whether a company is compliant with the ISO 9000 series. The two initiatives are not mutually exclusive and the objectives in applying them are different. A Six Sigma program is applied in organizations based on its top-line and bottom-line rationales. The primary objective for applying the ISO 9000 series standards is to demonstrate the company’s capability to consistently provide conforming products and/or services. Therefore, the ISO 9000 series standard falls well short of making Six Sigma superfluous.
The ISO 9000 series standards have from their early days been regarded and practiced by industry as a minimum set of requirements for doing business. The new ISO 9000:2000 stan
dards do not represent a significant change to this perspective. Six Sigma on the other hand, aims at world-class performance, based on a pragmatic framework for continuous improvement.
The author believes that Six Sigma is superior in such important areas as rate of improvement, bottom-line and top-line results, customer satisfaction, and top-level management commitment. However, considering the stronghold of ISO 9000 in industry, Six Sigma and ISO 9000 are likely to be applied by the same organization, but for very different purposes.

Lean Manufacturing and Six Sigma

(1) What is lean manufacturing?
Currently there are two premier approaches to improving manufacturing operations. One is lean manufacturing (hereinafter referred to as “lean”) and the other is Six Sigma.
Lean evaluates the entire operation of a factory and restructures the manufacturing method to reduce wasteful activities like waiting, transportation, material hand-offs,inventory, and over-production. It reduces variation associated with manufacturing routings, material handling, storage, lack of communication, batch production and so forth. Six Sigma tools, on the other hand, commonly focus on specific part numbers and processes to reduce variation. The combination of the two approaches represents a formidable opponent to variation in that it includes both layout of the factory and a focus on specific part numbers and processes.
Lean and Six Sigma are promoted as different approaches and different thought processes. Yet, upon close inspection, both approaches attack the same enemy and behave like two links within a chain – that is, they are dependent on each other for success. They both battle variation, but from two different points of view. The integration of Lean and Six Sigma takes two powerful problem-solving techniques and bundles them into a powerful package. The two approaches should be viewed as complements to each other rather than as equiva
lents of or replacements for each other (Pyzdek, 2000). In practice, manufacturers that have widely adopted lean practices record performance metrics superior to those achieved by plants that have not adopted lean practices. Those practices cited as lean in a recent industrial survey (Jusko, 1999) include
• quick changeover techniques to reduce setup time;
• adoption of manufacturing cells in which equipment and workstations are arranged sequentially to facilitate small-lot, continuous-flow production;
• just-in-time (JIT) continuous-flow production techniques to reduce lot sizes, setup time, and cycle time; and,
• JIT supplier delivery in which parts and materials are delivered to the shop floor on a frequent and as-needed basis.
(2) Differences between Lean and Six Sigma
There are some differences between Lean and Six Sigma as noted below.
• Lean focuses on improving manufacturing operations in variation, quality and productivity. However, Six Sigma focuses not only on manufacturing operations, but also on all possible processes including R&D and service areas.
• Generally speaking, a Lean approach attacks variation differently than a Six Sigma system does (Denecke, 1998) as shown in Figure 5.4. Lean tackles the most common form of process noise by aligning the organization in such a way that it can begin working as a coherent whole instead of as separate units. Lean seeks to co-locate, in sequential order, all the processes required to produce a product. Instead of focusing on the part number, Lean focuses on product flow and on the operator. Setup time, machine maintenance and routing of processes are important measures in Lean. However, Six Sigma focuses on defective rates and costs of poor quality due to part variation and process variation based on measured data.
• The data-driven nature of Six Sigma problem-solving lends itself well to lean standardization and the physical rearrangement of the factory. Lean provides a solid foundation for Six Sigma problem-solving where the system is measured by deviation from and improvements to the standard.
• While Lean emphasizes standardization and productivity, Six Sigma can be more effective at tackling process noise and cost of poor quality.

Seven Steps for Six Sigma Introduction

When a company intends to introduce Six Sigma for its new management strategy, we would like to recommend the following seven-step procedures:
1. Top-level management commitment for Six Sigma is first and foremost. The CEO of the corporation or business unit should genuinely accept Six Sigma as the management strategy. Then organize a Six Sigma team and set up the long-term Six Sigma vision for the company.
2. Start Six Sigma education for Champions first. Then start the education for WBs, GBs, BBs and MBBs in sequence. Every employee of the company should take the WB education first and then some of the WBs receive the GB education, and finally some of the GBs receive the BB education. However, usually MBB education is practiced in professional organizations.
3. Choose the area in which Six Sigma will be first introduced.
4. Deploy CTQs for all processes concerned. The most important is the company’s deployment of big CTQy from the standpoint of customer satisfaction. Appoint BBs as full-time project leaders and ask them to solve some important CTQ problems.
5. Strengthen the infrastructure for Six Sigma, including measurement systems, statistical process control (SPC), knowledge management (KM), database management system (DBMS) and so on.
6. Designate a Six Sigma day each month, and have the progress of Six Sigma reviewed by top-level management.
7. Evaluate the company’s Six Sigma performance from the customers’ viewpoint, benchmark the best company in the world, and revise the Six Sigma roadmap if necessary. Go to step 1 for further improvement.
First of all, a handful or a group of several members should be appointed as a Six Sigma team to handle all kinds of Six Sigma tasks. The team is supposed to prepare proper education and the long-term Six Sigma vision for the company. We can say that this is the century of the 3Cs, which are Changing society, Customer satisfaction and Competition in quality. The Six Sigma vision should be well matched to these 3Cs. Most importantly, all employees in the company should agree to and respect this long-term vision.
Second, Six Sigma can begin from proper education for all classes of the company. The education should begin from the top managers, so called Champions. If Champions do not understand the real meaning of Six Sigma, there is no way for Six Sigma to proceed further in the company. After Champion’s education, GB BB MBB education should be completed in sequence.
Third, we can divide Six Sigma into three parts according to its characteristics. They are R&D Six Sigma, manufacturing Six Sigma, and Six Sigma for non-manufacturing areas. The R&D Six Sigma is often called DFSS (Design for Six Sigma). It is usually not wise to introduce Six Sigma to all areas at the same time. The CEO should decide the order of introduction to these three areas. It is common to introduce Six Sigma to manufacturing processes first, and then service areas and R&D areas. However, the order really depends on the current circumstances of the company.
Fourth, deploy CTQs for all processes concerned. These CTQs can be deployed by policy management or by management by objectives. Some important CTQs should be given to BBs to solve as project themes. In principle, the BBs who lead the project teams work as full-time workers until the projects are finished.

What is Six Sigma?

Sigma (s ) is a letter in the Greek alphabet that has become the statistical symbol and metric of process variation. The sigma scale of measure is perfectly correlated to such characteristics as defects-per-unit, parts-per-million defectives, and the probability of a failure. Six is the number of sigma measured in a process, when the variation around the target is such that only 3.4 outputs out of one million are defects under the assumption that the process average may drift over the long term by as much as 1.5 standard deviations.
Six Sigma may be defined in several ways. Tomkins (1997) defines Six Sigma to be “a program aimed at the near-elimination of defects from every product, process and transaction.” Harry (1998) defines Six Sigma to be “a strategic initiative to boost profitability, increase market share and improve customer satisfaction through statistical tools that can lead to breakthrough quantum gains in quality.”
Six Sigma was launched by Motorola in 1987. It was the result of a series of changes in the quality area starting in the late 1970s, with ambitious ten-fold improvement drives. The top-level management along with CEO Robert Galvin developed a concept called Six Sigma. After some internal pilotm implementations, Galvin, in 1987, formulated the goal of
“achieving Six-Sigma capability by 1992” in a memo to all Motorola employees (Bhote, 1989). The results in terms of reduction in process variation were on-track and cost savings totalled US$13 billion and improvement in labor productivity achieved 204% increase over the period 1987–1997 (Losianowycz, 1999). In the wake of successes at Motorola, some leading elec-
tronic companies such as IBM, DEC, and Texas Instruments launched Six Sigma initiatives in early 1990s. However, it was not until 1995 when GE and Allied Signal launched Six Sigma as strategic initiatives that a rapid dissemination took place in non-electronic industries all over the world (Hendricks and Kelbaugh, 1998). In early 1997, the Samsung and LG Groups in Korea began to introduce Six Sigma within their companies. The results were amazingly good in those companies. For instance, Samsung SDI, which is a company under the Samsung Group, reported that the cost savings by Six Sigma projects totalled US$150 million (Samsung SDI, 2000a). At the present time, the number of large companies applying Six Sigma in Korea is growing exponentially, with a strong vertical deployment into many small- and medium-size enterprises as well.
As a result of consulting experiences with Six Sigma in Korea, it was believed that Six Sigma is a “new strategic paradigm of management innovation for company survival in this 21st century, which implies three things: statistical measurement, management strategy and quality culture.” It tells us how good our products, services and processes really are through statistical measurement of quality level. It is a new management strategy under leadership of top-level management to create quality innovation and total customer satisfaction. It is also a quality culture. It provides a means of doing things right the first time and to work smarter by using data information. It also provides an atmosphere for solving many CTQ (critical-to-quality) problems through team efforts.
CTQ could be a critical process/product result characteristic to quality, or a critical reason to quality characteristic. The former is termed as CTQy, and the latter CTQx.

Why is Six Sigma Fascinating in ISO 9000?

Six Sigma has become very popular throughout the whole world. There are several reasons for this popularity. First, it is regarded as a fresh quality management strategy which can replace TQC, TQM and others.
Many companies, which were not quite successful in implementing previous management strategies such as TQC and TQM, are eager to introduce Six Sigma.
Development process of Six Sigma in quality management
Six Sigma is viewed as a systematic, scientific, statistical and smarter (4S) approach for management innovation which is quite suitable for use in a knowledge-based information society.
Second, Six Sigma provides efficient manpower cultivation and utilization. It employs a “belt system” in which the levels of mastery are classified as green belt, black belt, master black belt and champion. As a person in a company obtains certain
training, he acquires a belt. Usually, a black belt is the leader of a project team and several green belts work together for the project team.
Third, there are many success stories of Six Sigma application in well known world-class companies. As mentioned earlier, Six Sigma was pioneered by Motorola and launched as a strategic initiative in 1987. Since then, and particularly from 1995, an exponentially growing number of prestigious global firms have launched a Six Sigma program. It has been noted that many globally leading companies run Six Sigma programs (see Figure 3), and it has been well known that Motorola, GE, Allied Signal, IBM, DEC, Texas Instruments, Sony, Kodak, Nokia, and Philips Electronics among others have been quite successful in Six Sigma. In Korea, the Samsung, LG, Hyundai groups and Korea Heavy Industries & Construction Company have been quite successful with Six Sigma.
Lastly, Six Sigma provides flexibility in the new millennium of 3Cs, which are:
• Change: Changing society
• Customer: Power is shifted to customer and customer demand is high
• Competition: Competition in quality and productivity
The pace of change during the last decade has been unprecedented, and the speed of change in this new millennium is perhaps faster than ever before. Most notably, the power has shifted from producer to customer. The producer-oriented industrial society is over, and the customer-oriented information society has arrived. The customer has all the rights to order, select and buy goods and services. Especially, in e-business, the customer has all-mighty power.
Six Sigma with its 4S(systematic, scientific, statistical and smarter) approaches provides flexibility in managing a business unit.